Overview of impurity control and wall conditioning in NSTX
نویسندگان
چکیده
منابع مشابه
Overview of the NSTX Control System
The National Spherical Torus Experiment (NSTX) is an innovative magnetic fusion device that was constructed by the Princeton Plasma Physics Laboratory (PPPL) in collaboration with the Oak Ridge National Laboratory, Columbia University, and the University of Washington at Seattle. Since achieving first plasma in 1999, the device has been used for fusion research through an international collabor...
متن کاملWall conditioning with impurity pellet injection on TFTR
Solid lithium and boron pellets have been injected into TFTR plasmas to improve plasma performance by coating the graphite inner wall bumper limiter with a small amount of lower Z pellet material, which reduces the influx of carbon from the walls and reduces the edge electron density. This new wall conditioning technique has been applied successfully when continued He conditioning discharges, w...
متن کاملdevelopment and implementation of an optimized control strategy for induction machine in an electric vehicle
in the area of automotive engineering there is a tendency to more electrification of power train. in this work control of an induction machine for the application of electric vehicle is investigated. through the changing operating point of the machine, adapting the rotor magnetization current seems to be useful to increase the machines efficiency. in the literature there are many approaches wh...
15 صفحه اولThe resistive wall mode and feedback control physics design in NSTX
One of the goals of the National Spherical Torus Experiment (NSTX) is to investigate the physics of global mode stabilization in a low aspect ratio device. NSTX has a major radius R0 = 0.86 m, a midplane half-width of 0.7 m, and an on-axis vacuum toroidal field B0 0.6 T and has reached a plasma current Ip = 1.5 MA. Experiments have established the wall-stabilized MHD operating space of the mach...
متن کاملAn overview of recent physics results from NSTX
The National Spherical Torus Experiment (NSTX) is currently being upgraded to operate at twice the toroidal field and plasma current (up to 1 T and 2 MA), with a second, more tangentially aimed neutral beam (NB) for current and rotation control, allowing for pulse lengths up to 5 s. Recent NSTX physics analyses have addressed topics that will allow NSTX-Upgrade to achieve the research goals cri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Nuclear Materials
سال: 2001
ISSN: 0022-3115
DOI: 10.1016/s0022-3115(00)00496-7